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The results of tensile testing involving Waspaloy indicate that the failure strain was gradually reduced at
temperatures ranging between ambient and 300 °C. Further, serrations were observed in the engineering
stress versus strain diagrams in the temperature range of 300-600 °C. The reduced failure strain and the
formation of serrations in these temperature regimes could be the result of dynamic strain aging of this
alloy. The extent of work hardening due to plastic deformation was reduced at temperatures above 300 °C.
A combination of ductile and intergranular brittle failures was seen at temperatures above 600 °C. y’ was

detected at all tested temperatures.
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1. Introduction

Generation of hydrogen using a thermochemical process,
known as sulfur-iodine (S-I) cycle, has been considered in
recent years (Ref 1-3). Heat from nuclear reactors will be used
to accommodate chemical reactions involving the formation
and decomposition of sulfuric acid (H,SO4) and hydrogen
iodide (HI), leading to the generation of oxygen (O,) and
hydrogen (H,), respectively. A maximum temperature of
950 °C has been recommended to achieve the highest possible
efficiency in hydrogen generation using the S-I process, which
is illustrated in Fig. 1. It is obvious that the primary challenge
in developing H, using nuclear heat and chemical reactions is
the identification and selection of suitable structural materials
possessing superior tensile properties at elevated temperatures
and an excellent corrosion resistance in the presence of
aggressive chemical species.

Austenitic nickel (Ni)-base Waspaloy (UNS N07001) has
been investigated in this study to evaluate its tensile properties
at temperatures relevant to the S-I process. The identification of
Waspaloy as a candidate structural material in nuclear hydrogen
generation was based on its excellent high temperature tensile
properties and superior corrosion resistance in many hostile
environments (Ref 4-6). This article presents the results of
tensile testing of Waspaloy at temperatures ranging from
ambient to 1000 °C, elucidating a plausible mechanism of its
deformation in terms of work-hardening index () and fracture
morphology.
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2. Experimental Procedures

Round bars of Waspaloy were procured from a vendor in a
heat-treated condition, which consisted of annealing at 1052 °C
(1925 °F) followed by water quenching. The chemical com-
position of this alloy is shown in Table 1. Large austenitic
grains and annealing twins were seen in the optical micrograph
of the as-received material, as shown in Fig. 2. No additional
thermal treatments were given to Waspaloy prior to the
fabrication of the smooth cylindrical specimens for tensile
properties evaluation. The specimens were machined in such a
way that the gage section was parallel to the rolling direction. A
ratio of 4 was maintained between the gage length and the gage
diameter of these specimens to comply with the ASTM
designation E 08 2004 (Ref 7). These specimens had an
overall length of 101.6 mm (4 in.), a gage length of 25.4 mm
(1 in.), and a gage diameter of 6.35 mm (0.25 in.).

The tensile properties of Waspaloy including yield strength
(YS), ultimate tensile strength (UTS), percent elongation (%El),
and percent reduction in area (%RA) were determined using a
commercially available testing equipment at temperatures
ranging from ambient to 1000 °C. A custom-made, ceramic-
lined split furnace was attached to this equipment for determi-
nation of the tensile properties at elevated temperatures.
Nitrogen was continuously spurged during testing at elevated
temperatures to prevent contamination/oxidation of the speci-
men surface. The specimens were strained at a rate of 107> ™'
under tensile loading. The engineering stress versus engineer-
ing strain (s-¢) diagrams were automatically generated using
this equipment.

The extent of work hardening due to plastic deformation of
engineering metals and alloys is known to be related to both the
true stress (o) and the true strain (€) according to the Hollomon
equation (Eq 1) (Ref 8-11). K in this equation is a constant,
known as the strength coefficient. The magnitude of work-
hardening index, indicated by #, can be determined from the
slope of a straight line obtained by plotting log & versus log €
for a specimen tested in tension at a specific temperature.
However, since a linear relationship could not be obtained in
this investigation, the magnitude of n was determined by
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modifying Eq 1 through inclusion of a second term (A). A can
be given by [exp(K, + n' €)], where K; and n' represent an
intercept and the slope of the line, respectively, generated from
the plot of log A versus log €. Such modification in the & versus
¢ relationship, as shown by Eq 2, is known as the Ludwigson
equation (Ref 10-12).

o =K¢" (Eq 1)

(Eq 2)

In view of the resultant non-linear relationship, the magni-
tude of n was determined using the best linear portion of the log
o versus log € plot, where A was assumed to have a value of
zero. The value of n was computed from the slope of this line,
as shown in Fig. 3 for a specimen tested at ambient temper-
ature. The values of n at other temperatures were determined
using a similar approach.

The extent and morphology of failure at the primary fracture
surface of all tested specimens were determined by scanning
electron microscopy (SEM). Energy dispersive spectroscopy
(EDS) was used for elemental analysis in the vicinity of these
failures. Further, X-ray diffractometry (XRD) was used to
determine the presence or absence of precipitates/secondary
phases, if any.

o = (Ke"+A)

3. Results and Discussion

The results of tensile testing of Waspaloy are illustrated in
Fig. 4 in the form of a superimposed s-¢ diagram as a function
of the testing temperature. As anticipated, the magnitudes of
YS, UTS, and failure stress were gradually reduced with
increasing temperature. It is interesting to note that no
distinction could be made between Y'S and UTS at temperatures
above 800 °C, indicating an absence of uniform strain at
significantly higher temperatures. The variations of all four

#S0:+ 2H.0
ZH1 + H;50,

Fig. 1 S-I cycle

Table 1 Chemical composition of Waspaloy

tensile parameters (YS, UTS, %El, and %RA) derived from the
s-¢ diagrams and the specimen dimensions, before and after
replicate testing, are given in Table 2.

An evaluation of the tensile data clearly indicates that the
failure strain in terms of %El was gradually reduced within a
temperature range of ambient to 300 °C. The reduced ductility
in terms of %El with increasing temperature, as seen here, has
often been cited (Ref 8) to be the result of dynamic strain aging
(DSA) associated with the work-hardening of a susceptible

Fig. 2 Optical micrograph, 1 mL HCl + 10 mL acetic acid + 5 mL
HNO;, 100x

5.40 -
5.35 —
5.30 —
5.25

5.20

log o

Ludwigson Curve
5.15 4
Strain Rate: 10 sec™

1 Temperature: Ambient
5.10

] Ideal Hollomon Curve
5.05

$.00 1 T T T T 1 T 1
A4 10 08 08 07 06 05 04

log €

Fig. 3 log o versus log € for n calculation

Elements, wt.%

Heat no. C Co Cr Fe Mn Mo

Ni P Al Ti Ta Si \4 W

GHS55 0.044 13.11 19.40 0.08 0.01 4.23

58.61 0.002 1.39 3.03 0.02 0.02 0.01 0.02
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Fig. 4 s-e diagram versus temperature

Table 2 Tensile properties versus temperature

Temperature, °C  YS, ksi/MPa  UTS, ksi/MPa %El %RA

Ambient 99/684 178/1226 506 450
100 95/657 165/1138 48.1  47.0
200 93/641 163/1123 479 481
300 89/615 161/1111 44.1 487
400 87/600 150/1035 473 498
450 87/599 149/1030 479  50.0
600 86/595 146/1007 419 509
700 85/586 115/793 174 31.0
800 83/570 93/641 7.1 15.3
900 68/469 69/476 240  38.0
1000 18/125 19/131 41.0 432

material due to tensile loading at relatively lower temperatures.
A similar phenomenon has been reported for other nickel-base
austenitic materials including Alloy C-276 (Ref 13). The
occurrence of DSA is known to be the result of solute diffusion
within a susceptible temperature regime (Ref 14-17), thus,
impeding the movement of dislocations generated during
plastic deformation. At relatively higher temperatures (400
and 450 °C), the ductility in terms of %El was enhanced,
possibly due to a greater dislocation mobility. Interestingly,
serrations of varied heights were also seen in the s-¢ diagrams
at temperatures ranging from 300 to 600 °C that are also known
to be associated with the occurrence of DSA (Ref 13).

The average n values, determined for specimens tested at
room temperature, 100, 200, 300, 400, and 450 °C using
Hollomon and Ludwigson relationships, are given in Table 3.
An evaluation of these data indicates that between ambient
temperature and 300 °C, the magnitude of » ranged between
0.48 and 0.52, showing an insignificant variation of this
parameter. However, the magnitude of » was reduced to some
extent at temperatures above 300 °C, suggesting that the
ductility was enhanced at elevated temperatures due to the ease
of plastic flow. This observation is consistent with the higher

Table 3 n versus temperature

Temperature, °C n

Ambient 0.48
100 0.51
200 0.52
300 0.48
400 0.43
450 0.40

Fig. 5 SEM micrographs of tested tensile specimens: (a) ambient temperature, (b) 600 °C, and (c) 800 °C
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Fig. 6 EDS spectrum for specimen tested at 800 °C
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Fig. 7 XRD profile versus temperature

ductility in terms of the calculated %EIl at 400 and 450 °C, as
shown in Table 2. No technical data currently exist in the open
literature on the variation of » with temperature for an austenitic
alloy such as Waspaloy. Thus, a comparison of the resultant n
values to the literature data cannot be made.

The evaluation of the primary fracture surface of the
specimens tested at temperatures ranging between ambient and
600 °C by SEM revealed dimpled microstructures, indicating
predominantly ductile failures. However, a combination of
ductile and intergranular brittle failures was seen in the SEM
micrographs of the specimens tested at temperatures above
600 °C, as shown in Fig. 5. EDS was performed in the vicinity
of cracks to identify deleterious species, if any. However, the
EDS spectrum, shown in Fig. 6, exhibited only the major
elements present in Waspaloy. Subsequently, XRD was used to
determine the presence or absence of precipitates/secondary
phases that could possibly be responsible for brittle failure of
Waspaloy at temperatures above 600 °C. The indexed peaks,
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determined from the XRD analyses (Fig. 7), matched the
fundamental FCC reflections of the gamma prime (y") phase,
known (Ref 18) to be present in Waspaloy.

4. Summary and Conclusions

The tensile properties of Waspaloy have been evaluated at
temperatures ranging from ambient to 1000 °C. SEM, EDS,
and XRD have been employed to develop a basic understand-
ing of tensile deformation of this alloy as a function of the
testing temperature. The key results and the significant
conclusions derived from this investigation are summarized
below:

e The tensile strength of Waspaloy in terms of YS and UTS
was gradually reduced with increasing temperature.
Beyond 800 °C, no uniform strain was seen in the s-e
diagrams.

e The failure strain (ef) was gradually reduced within a tem-
perature range of ambient to 300 °C, followed by an
irregular variation at higher temperatures. Serrations of
different heights were also noted in the s-e diagrams for
specimens tested at temperatures ranging from 300 to
600 °C.

* Reduced e; and the occurrence of serrations within spe-
cific temperature regimes may be attributed to the phe-
nomenon of DSA.

e The magnitude of » was reduced at temperatures above
300 °C due to the ease of plastic deformation at higher
temperatures.

e Dimpled microstructures, indicating ductile failures, were
seen in the SEM micrographs of specimens tested at tem-
peratures up to 600 °C. However, a combination of ductile
and intergranular brittle failures was seen in the specimens
tested at higher temperatures.

e The XRD technique was capable of identifying the vy’
phase in specimens tested both at ambient and elevated
temperatures.
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